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Abstract. This paper examines the a-core of strategic games by means of the
consistency principle. I provide a new definition of a reduced game for strategic
games. And I define consistency (CONS) and two forms of converse consis-
tency (COCONS and COCONS¥*) under this definition of reduced games. Then
I axiomatize the a-core for families of strategic games with bounded payoff
functions by the axioms CONS, COCONS*, weak Pareto optimality (WPO)
and one person rationality (OPR). Furthermore, I show that these four axioms
are logically independent. In proving this, I also axiomatize the o-individually
rational solution by CONS, COCONS and OPR for the same families of
games. Here the a-individually rational solution is a natural extension of the
classical ‘maximin’ solution.
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0. Introduction

This paper examines the a-core of strategic games from an axiomatic point of
view. The a-core is one of several core concepts in strategic games. The fol-

* This paper is based on Chapter 2 of my MA thesis carried out at Otaru University of Com-
merce. An earlier version was reported in the Fourth International Meeting of the Social Choice
and Welfare in Vancouver July 1998.

** T am very grateful to Prof Tomoichi Shinotsuka for his great effort in supervision. Also I wish
to thank an anonymous referee, Profs Dipankar Dasgupta, Tsuneyuki Namekata, Chisato Shi-
bayama, Masaru Uzawa, Kenji Yamamoto and the participants of the above-mentioned meeting. I
am indebted to an associate editor whose comments and suggestions were very helpful in extending
the results in an earlier manuscript. All errors are my own responsibility.
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lowing scenario describes a main idea of the concept. Consider a strategic
game. Assume that a strategy profile is ‘suggested’ for play. Each coalition has
a chance to deviate from the suggested strategies. In other words, each coalition
may ‘block’ the suggested strategies. In blocking the strategy profile, a coalition
must select their blocking strategies firstly. And secondly, the remaining players
move in response. And a coalition must ‘improve its position’ by blocking. The
problem is how one defines this ‘improvement’. The a-core assumes that a co-
alition has a “pessimistic perception!” about the choices by the complementary
coalition. That is, a coalition blocks a strategy profile if each member of the
coalition strictly improves upon the ‘suggested’ payoff, no matter what strate-
gies the remaining players choose. The a-core is the set of all strategy pro-
files which are not blocked by any coalition. The a-core was introduced by
Aumann (1961). Scarf (1971) proved the existence of the a-core for a general
class of games. Later, Kajii (1992) and Yannelis (1991) investigated the exis-
tence problem further.

This paper adopts an axiomatic approach. One of the purposes of this
method is to compare one solution with another. Especially in this paper, the
consistency principle plays a main role. Consistency is a general property that
many ideas appearing in social sciences have in common. It has been shown
that a considerable number of concepts from allocation rules, public finance,
game theory and many other fields in social sciences satisfy consistency. The
property gives a beautiful and strong unity across a variety of distinct sub-
jects?. This is the reason why we call it a “principle’, not merely a ‘property’.
Particularly in game theory, many solutions have been axiomatized by consis-
tency. The following describes a general idea of consistency in game theory?:
Let G be a game*. Let x be an outcome which ‘solves’ the game. Assume that
some of the players of the game leave the scene and the remaining players,
denoted by S, play the ‘reduced’ game GS*. Apply the same solution to G5'*.
The solution is said to satisfy consistency if x|S, the restriction of x to S, results
as a solution outcome of G5, It is not always easy to find how the reduced
games G should be defined. For coalitional form games, several definitions
of reduced games are available, while only one is available for strategic form
games to the best of my knowledge.

In the theory of coalitional form games®, research on the consistency prin-
ciple has a long history. And a large literature has been published. On the other
hand, studies on the consistency principle for strategic games is relatively new.
As far as I know, the first systematic research in this area is Peleg and Tijs
(1996)(P&T, henceforth). They defined reduced games in strategic form. And
they gave axiomatic characterizations to the following solutions for strategic
games: Nash equilibria (Nash, 1951), strong Nash equilibria (Aumann, 1959),
semi-strong Nash equilibria (Kaplan, 1992) and coalition-proof Nash equilib-
ria (Bernheim, Peleg and Whinston, 1987). All these axiomatizations are done by

! T borrowed this terminology from Ichiishi (1997).

2 For comprehensive survey, see Thomson (1990, 1996).

3 The following description on consistency is due to Aumann (1987).

4 G may take any form, TU, NTU or strategic.

5 T avoid the term ‘cooperative game theory’ in this context on the grounds that what distin-
guishes between non-cooperative and cooperative games is not game forms, but the restriction on
the behavior of players. Indeed, the o-core is a cooperative solution in strategic forms. I owe this
viewpoint to Ichiishi (1997).
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consistency together with various forms of its converse, converse consistency.
Peleg, Potters and Tijs (1996) explored some general relations between con-
sistency and the non-emptiness axiom using a graph theoretical method.
Norde, Potters, Reijnierse and Vermeulen (1996) gave further axiomatizations
of Nash equilibria on two classes of strategic games: The class of mixed exten-
sions of finite games and the class of games with continuous concave payoff
functions. It is worth noting that their characterizations do not employ any
form of converse consistency. All these studies are based on the reduced games
introduced in P&T (PT reduced games, henceforth).

Unfortunately, there are solutions to strategic games which violate consis-
tency under PT reduced games. The a-core, defined on some classes of strategic
games, falls into this category. This raises the questions: How should I define
the reduced game concept to restore consistency for the a-core? And then with
what other axioms can I axiomatize the a-core by consistency? These are the
problems that this paper attempts to answer to. Precisely, I shall provide an
axiomatization of the a-core correspondence on any closed® family of games
(in strategic form) with bounded payoff functions by consistency under a new
definition of a reduced game. Further, I shall show the logical independence of
the axioms used in the axiomatization. In proving this, I also axiomatize the
a-individually rational solution by consistency for the same families of games
as the ones on which the a-core is axiomatized. Here the a-individually rational
solution is a natural extension of the classical ‘maximin’ solution.

The plan of the paper is as follows: The next section introduces some pre-
liminaries. Section 2 provides some definitions, including a new definition of
reduced games. Section 3 states the main results with some lemmas. Finally, in
Section 4, I discuss the interpretations of the new reduced games. Throughout,
I will compare the notions and results from P&T with mine.

1. Preliminaries
In this section, I introduce some basic definitions.

(1) Strategic form game: A strategic (form) game, is a list G:=
(N(G), { X}, uj};c n(G))- Here N(G) is the finite set of players. X; is the
(non-empty) strategy set of player j e N(G). For a coalition S, S <
N(G)" with S # &, X denotes the Cartesian product [[; ¢ X;®. And

: Xy(g) — R is the payoff function of player j € N(G). For S < N(G)
w1th S ;é <, xs€Xg and je N(G), denote by Im(u;| ) the image
wi({xs} X Xn(G)\s)s 1-€., the set {u;(xs,yms) [Yw\s € Xn(ops}-

(2) The a-core: Let a strategic game G be given. Let S = N(G) with S # &,
and x € Xy(g). Say that a coalition S blocks a strategy profile x if Jyg e
Xs:VjesS: 1nf Im(w,5) > u;(x). A strategy profile x is said to be in the o-
core of G if no coalition blocks x. Thus the a-core is the set of all strategy
profiles which are immune to blocking. Note that my definition of block-

See Definition 2-2 in Section 2.

Throughout the paper, inclusion ‘<’ is weak.

This subscript notation applies also for a strategy profile, e.g. x5 denotes (xj)j cs € Xs.
R denotes the real line.
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ing is slightly stronger than the ‘standard’ definition: Most authors define
that S blocks x if dys e Xs: Vyms € Xy\s: Vi €St u;(ys, yas) > u(x).
Thus my a-core is slightly larger than the ‘standard’ one. All preceding
existence results (e.g. Scarf, 1971) remain true for my definition. For fur-
ther remark on this modification, see Remark 3-4.1°

(3) The o-individually rational solution: A strategy profile x is said to be a-
individually rational if no singleton coalition blocks x. The a-individually
rational solution (o-IR solution) of a strategic game G is the set of all o-
individually rational strategy profiles. The definition of «-individual ra-
tionality is a natural extension of the traditional ‘maximin’ type individual
rationality. It is easy to see that a strategy profile x is a-individually rational
if and only if for each player j, x gives him a payoff at least as large as his
‘security level’, i.e., u;(x) = supe; infen ¢ jy (&, En53)- By definition, the
o-IR solution contains the a-core.

2. Definitions

This section provides some definitions. Henceforth, without mentioning, I
refer to a strategic game simply as a game.

Definition 2-1. Let G = (N(G),{Xj,u;};c n(G)) be a game. Let x € Xy and
S < N(G) with S # . Then the reduced game of G with respect to S and x is
a game G5 = (S, {X, ujS’x}jGS), where the payoff functions ujs’x are defined as
follows:

u]&x(ys) = inf Im(;|,5), if ys # Xs,

=u(ys,Xn\s)  otherwise, for any ys € Xs.

Some discussion on reduced games comes in length in Section 4. Here it suf-
fices to mention the following points. Firstly, the reduced game may not well-
defined for every S and x. This is not the case for PT reduced games: Any
game G has its PT reduced game with respect to any S and x. Their definition
dgﬁ”ers from mine in how the payoff functions u>* are defined: P&T defines
u;(ys) =u;(ys, xy\s) forany ys € Xs. Secondly, the reduction operation may
destroy some properties that the original game possesses (e.g. continuity of the
payoff functions). Thus I restrict my attention to families of games within
which the reduction operation makes sense.

Definition 2-2. A family of games % is said to be closed if
VGe%: VS < N(G), S+ J:VxeXyg: G¥ e9.

This type of closedness appears in P&T together with some other types. Let
%* denote the family of games {G |G is a game, and Vj € N(G): the payoff

10 T owe this modification of the blocking concept to the associate editor.
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function u; is bounded}. The family %~ is one example of closed families of
games. In Section 3, where I state my theorems, I deal with only all closed
subfamilies of ¥* as the domains of the solutions to be axiomatized!!. I chose
these families because in many important economic applications, payoff func-
tions are assumed to be bounded.

Definition 2-3. Let 9 be a family of games. A solution on 9 is a correspondence
0.9 —— Jgey Xno) such that VG € 9: 9p(G) = Xy(q).-

Definition 2-4. Let 9 be a closed family of games. Let ¢ be a solution on .
Then if G € G has no less than 2 players, i.e., |N(G)| = 2, then define

¢~ (G) = {X € XN(G) |VS c ]\I(G)7 S # @’N(G) Xs € g0((;5'@()}
Now I am ready to introduce the axioms. Consistency comes first.

Definition 2-5. Let 4 be a closed family of games. A solution ¢ on 9 satisfies
consistency (CONS) if

YGe¥, |N(G)| =2 9(G)c<p™(G).

Definition 2-6. Let ¢ be a closed family of games. A solution ¢ on 9 satisfies
converse consistency (COCONS) if

YGe¥, |N(G)| =2 ¢(G)>ep~(G).

Substituting my reduced games with PT reduced games, this axiom COCONS
would be the same as COCONS in P&T, and COCONS, in Peleg, Potters
and Tijs (1996). P&T gives an axiomatization of the Nash equilibrium corre-
spondence with their COCONS axiom.

Definition 2-7. Let G be a game. Then denote
WPO(G) = {x € Xy(g)| 73y € Xn(o): ¥/ € N(G): uj(y) > u;(x)}.

WPO(G) is simply the set of weakly Pareto optimal strategy profiles of game
G.

Definition 2-8. Let 4 be a closed family of games. A solution ¢ on 9 satisfies
converse consistency* (COCONS*) if

VGe¥, |N(G)|=2:9(G)>p~(G)nWPO(G).
COCONS* is a weaker version of COCONS. If T substitute my reduced

games with PT reduced games, this axiom COCONS* would be the same as
COCONS? in P&T, and COCONSc in Peleg, Potters and Tijs (1996). A

U1 T am grateful to the associate editor for suggesting these families of games.
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similar axiom is used in axiomatizations of the Walras correspondence for
generalized economies (Van den Nouweland, Peleg and Tijs, 1996).

Definition 2-9. Let & be a family of games. A solution ¢ on 9 satisfies weak
Pareto optimality ( WPO) if

VG e 4: 9(G) = WPO(G).

Definition 2-10. Let 4 be a family of games. A solution ¢ on 9 satisfies one
person rationality (OPR) if

VGe%, |N(G)|=1:¢(G)=WPO(G).

The axiom OPR simply says that the solution ¢ solves single person optimiza-
tion problems.

3. The results

This section states characterization results of the a-core and the «-IR solution.
As the domains of these two solutions, I consider all closed subfamilies of %7,
the family of games with bounded payoff functions. Note that ™ itself is a
closed family of games. I start with the following useful lemma.

Lemma 3-1. Let 4 be a non-empty closed family of games. Let u be a solution
on 4. Then there exists at most one solution ¢ on 4 which satisfies

(A) VG e %: p(G) = u(G),
(B) VG €4, [N(G)| = 2: p(G) = u(G) n 9™ (G), and
(C) ¥G 4, [N(G)| = L: u(G) = 9(G).

Remark 3-2'%: Lemma 3-1 above shall be applied to prove the ‘uniqueness’
part of the axiomatic characterizations (Lemmas 3-5 and 3-13). Although ¢~
is defined with reference to the reduction operation, Lemma 3-1 holds true
regardless of the type of reduced games to adopt. This is also the case for
Lemmas 3-5 and 3-13. Thus Lemmas 3-1, 3-5 and 3-13 all hold true even if
I alternatively adopt PT reduced games or any other.

Proof of Lemma 3-1: Let u,, and y, be solutions on 4. For x and each
o € {Y,¥,}, assume that the conditions (A), (B) and (C) in the above are
satisfied. Suppose that ¥ # y,. Then there must exist a game H € 4 for
which (i) v (H) # y(H), and (i) VG e %: [N(G)] < [N(H)| =4 (G) = ,(G).
Clearly, by (C), I have |[N(H)| > 2. Without loss of generality, I assume that
x ey (H) and x ¢ y,(H). By (A), x € u(H), Then by (B), I have x € Y (H)
and x ¢ Y5 (H). Thus 3S = N(H), S # &, N(H): xs € Yy (HS*) and xs ¢
W, (HS ™). Since |S| < |N(H)|, this contradicts (ii). ©

12 T owe this remark and the proof of Lemma 3-1 to the associate editor.
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3-1. The a-core
My main result is as follows:

Theorem A. Let 4 be a non-empty closed subfamily of 9*. A solution ¢ on 4
satisfies CONS, COCONS*, WPO and OPR if and only if ¢ is the a-core cor-
respondence.

To prove this theorem, I use the following two lemmas:

Lemma 3-3. Let 4 be a non-empty closed subfamily of 4. The o-core corre-
spondence C on 9 satisfies CONS, COCONS*, WPO and OPR.

Proof: Let G € 4. Denote the player set N(G) simply by N.

(i) (OPR): trivial.

(i) (WPO): Let x ¢ WPO(G). Then N blocks x. Thus x ¢ C(G).

(iif) (CONS): Suppose that xe C(G). Let S < N and S # 5. Then con-
sider the reduced game G**. Suppose that xg ¢ C(GS~). Then I get
TSN, T+#Z: Iyre Xr:VjeT:inf Im(ujs’x|yr) > u/s‘x(xg).That
is, 3T =N, T#: JyreXr: VjeT: inf.grcys\rinfoysexn sty
(yrszs\1>2w\s) = inf Im(w],7) > w;(x). That is, T blocks x in G. This
says x ¢ C(G), a contradiction.

(iv) (COCONS*): Let x e WPO(G) with x ¢ C(G). Thus 3S < N, S # (&,
N:3dys e Xs: Vje S:inf Im(y ) > u;(x). That is, IS < N, S # &, N:
YyseXs:VjeS: uis’x(ys) > ujs’x(xS). Thus I have x5 ¢ C(G5~), which
implies x ¢ C~(G). Thus 1 obtain (x e WPO(G) and x ¢ C(G)) = x ¢
C~(G). That is, x e WPO(G) n C~(G) = xe C(G). ©

Remark 3-4. If T alternatively adopt the ‘standard’ blocking concept (see (2) of
Section 1) to define the a-core, the axiom COCONS¥* is not necessarily sat-
isfied. (The other three axioms are all satisfied.) However, the two blocking
concepts (the ‘standard’ one and mine) coincide on some closed subfamilies of
%*. For such families, the ‘standard’ a-core, which is after all the same as my
a-core, is characterized by the present axioms. An example of such families is
any closed family ¢ satisfying the following condition: VG € ¥4: VS < N(G):
Vys € Xs: Vj € S: minIm(ul,s) exists. For example, the family of all games
with finite strategy sets satisfies this condition. In general, if I adopted the
‘standard’ definition of blocking, then the families of games that my axioma-
tization covers would be more limited.

Lemma 3-5. Let 4 be a non-empty closed subfamily of 4*. There exists at most
one solution ¢ on % which satisfies CONS, COCONS*, WPO and OPR.

Proof: Since CONS, COCONS* and WPO are satisfied, it is immediate that
VG e9, IN(G)| =2: 9(G) = WPO(G) n ¢~ (G). Let u be the solution on ¥
such that VG € 4: u(G) = WPO(G). Then applying Lemma 3-1, I have the
desired conclusion. ©

Now Theorem A follows immediately from Lemmas 3-3 and 3-5.
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Remark 3-6. If I replace my reduced games with PT reduced games, then these
four axioms characterize the strong Nash equilibrium correspondence (Theo-
rem 3.2 in P&T). In other words, the a-core and strong Nash equilibria are
axiomatized with the same combination of axioms but under different types of
reduced games.

Further, these four axioms are logically independent. The following exam-
ples verify this.

Example 3-7. Let ¢ be a solution on 4™ such that
VGe%": p(G)=(.
Then ¢ satisfies CONS, COCONS* and WPO, but not OPR.

Example 3-8. Let ¢ be a solution on 4™ such that
VG e %" p(G) = WPO(G).

Then ¢ satisfies COCONS*, OPR and WPO, but not CONS. The following
counterexample shows that CONS is not satisfied:

) 15
H]Z 81 (3,0) (0,3)
n(1,2) (2,1)

Here player 1 chooses row while player 2 column. WPO(H,) is the whole set

of strategy profiles. The reduced game H 1{1} (5152) .

S1 3
nh o1

Then WPO(H " %)y = {5,}. Thus ¢ violates CONS.
Example 3-9. Let ¢ be the «-IR solution on %*.

Then ¢ satisfies CONS, COCONS* and OPR, but not WPO. This follows from
Theorem B in the next subsection. The following counterexample shows that
WPO is not satisfied:

kY] 15}
H2 81 (5,5 (0,6)
4] (6,0) (2,2)

The strategy profile (#;,#,) belongs to the «-IR solution of H, but is Pareto-
dominated by (si,s2). Thus ¢ violates WPO.
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Example 3-10. Let ¢ be a solution on %" such that
VG e 9*: ¢(G) = WPO(G) if |IN(G)| =1,

= ¢ otherwise.

Then ¢ satisfies CONS, OPR and WPO, but not COCONS*. The following
counterexample checks this:

kY] 1)
F: 5 (174) ( 72)
n(2,3) (3,1

WPO(F) = {(s1,52), (s1,12), (t1,52)}. Consider the reduced games Fi}:(11:52)
and F{2)(11.s2)

Flhe2). o

Hnho 2
FRL2). o
31

Then 7, € WPO(F{}H(1:52)) and s, e WPO(F12- (152 Thus (11,s,) € ¢~ (F).
Then I get ¢~ (F) n WPO(F) # . Thus ¢ violates COCONS*.
3-2. The a-individually rational solution

In Example 3-9, I indicated that the «-IR solution satisfies CONS, COCONS*
and OPR. To verify this, I axiomatize the «-IR solution.

Theorem B. Let ¥ be a non-empty closed subfamily of 9*. A solution ¢ on
@ satisfies CONS, COCONS and OPR if and only if ¢ is the a-IR solution
correspondence.

Remark 3-11: Comparing with the foregoing axiomatization of the a-core, this
system of axioms not only drops WPO but adopts a stronger version of con-
verse consistency (COCONS implies COCONS¥*).

The proof of Theorem B is similar to the proof of Theorem A.

Lemma 3-12. Let 4 be a non-empty closed subfamily of 4. The a-IR solution
IR on % satisfies CONS, COCONS and OPR.

Proof: Let G € 4. Denote the player set N(G) simply by N.
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(i) (OPR): trivial.

(ii) (CONS): Let xeIR(G). Suppose that IS = N, S# ¥, N: x5 ¢ IR(G>¥).
That is, 3j € S: {j} blocks x5 in G5*. Then setting 7 = {;}, the same
argument as in (iii) of the proof of Lemma 3-3 applies. Then I have that
{J} blocks x in G. That is, x ¢ IR(G), a contradiction.

(iii) (COCONS): Suppose that x € Xy and x ¢ IR(G). That is, 3j € N: {j}
blocks x in G. Then, setting S = {;}, applying the same argument as in
(iv) of the proof of Lemma 3-3, I have that {;} blocks x; in G{/}:*. That
is, x; ¢ IR(G/}). The desired conclusion follows. ©

Lemma 3-13. Let 9 be a non-empty closed subfamily of 9. There exists at
most one solution ¢ on % which satisfies CONS, COCONS and OPR.

Proof: Tt is immediate from CONS and COCONS that VG € 4, |N(G)| = 2:
¢~ (G) = ¢(G). Let u be the solution on ¥ such that VG e 4: [N(G)| > 2 =
u(G) = Xy, and [N(G)| =1 = u(G) = WPO(G). Then applying Lemma
3-1, I obtain the desired conclusion. ©

Now Theorem B follows directly from Lemmas 3-12 and 3-13.

Remark 3-14: Substituting my reduced games with PT reduced games, these
three axioms give an axiomatization of the Nash equilibrium correspondence
(Theorem 2.12 in P&T). This is analogous to the fact mentioned in Remark
3-6. Readers can find some discussion on this point in Section 4.

One can check the logical independence of these three axioms by the fol-
lowing examples:

Example 3-15. Let ¢ be a solution on ¢* such that
VGed": p(G)= (.
Then ¢ satisfies CONS and COCONS, but not OPR.
Example 3-16. Let ¢ be a solution on ¢* such that
VG e %" p(G) = WPO(G) if IN(G)|=1,
= (¥ otherwise.
Then ¢ satisfies CONS and OPR, but not COCONS.
Example 3-17. Let ¢ be a solution on ¢* such that
VG e %" p(G) = WPO(G) if IN(G)| =1,
= Xn() otherwise.

Then ¢ satisfies COCONS and OPR, but not CONS.
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4. Discussion

This section discusses the following two points: (I) On the interpretations of
reduced games. (II) An implication of the facts indicated in Remarks 3-6 and
3-14.

(I)!3 Although formally defined, I have not yet given an intuitive inter-
pretation of my reduced games. On the other hand, PT reduced games have
a straightforward interpretation. They remarked: “(Let a game G be given
and (J #S = N(G) and x € Xy(g).) If it is common knowledge among the
members of S that the members of N(G)\S have chosen the strategies x;,
i € N(G)\S, then the members of S are faced with the game G5*.” Although
not so simple as this one, the following interpretation of my reduced games
seems to illustrate the point. Let a game G be given, and let J # S = N(G)
and x € Xy (). Now split the game G into two stages. In the first stage, the
members of S choose their strategies, and then, in the second stage, the
members of N(G)\S move in response knowing what S has chosen. Each
player belonging to S believes that (i) N(G)\S will play xy(g) s if S plays xs,
and that (ii) if S choose ys # xg, then N(G)\S will jointly punish him by
practising the strategies that minimizes /is payoff (given ys has been chosen).
Tl;en, in effect, the first stage of the game is equivalent to the reduced game
G,

To be fair, however, I have to point out the following difficulties about this
interpretation.

(a) The members of S do not expect that, in the second stage, the players in
N(G)\S behave as payoff maximizers when S deviated from the strategy
profile xs.

(b) It is not always possible for N(G)\S to jointly choose strategies to simul-
taneously minimize the payoff of each member of S.

(c) Each player j in S believes that, when S collectively deviated from xg, he is
to be punished regardless of whether or not e deviated from his own
strategy x;.

Despite all these facts, [ am assuming that the members of S believe (ii) in my
interpretation. I consider this to be an expression of the ‘pessimism!*” found in
the ‘maximin’ thought, which underlies both the o-IR solution and the a-core.
My scenario reflects the nature of the solutions to be axiomatized. This makes
a clear contrast to the idea behind PT reduced games. In the PT reduced game
GS*, a player in S is ‘passive’, rather than ‘pessimistic’, in a sense, to the
choices of strategies by the members of N(G)\S. Or one might see that in the

13 T thank the associate editor for various comments which were useful in improving this part of
the paper.

4 This word expresses the point that both in the a-core and the a-IR solution, a coalition (a player)
is concerned with every conceivable action open to the complementary coalition regardless of its
likelihood. Scarf (1971) pointed out this as a drawback of the a-core: “A coalition S, in attempting
to obtain an improved position for all of its members must confront the entire range of strategic
possibilities open to the players not in S, including those which lead to disastrous consequence for
the complementary coalition and would in all probability not be undertaken. This inability to dis-
criminate among counterresponses ... results in the inclusion of more outcomes in the solution
than might seem reasonable.”
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case of the PT reduced game G*%*, a player in S has ‘more information’ about
the choices to be made by the players in N(G)\S than in the case of my reduced
game.

However, there may be an alternative path to avoid the difficulty (c). One
may define reduced games as follows:

(ARG) u*(ys) = wi(x) if y; = x;,

J

= inf Im(u;|,5) otherwise.

According to the definition (ARG) in the above, only player(s) j who deviated
from the strategy x; is to be punished in the corresponding scenario. Interest-
ingly, it is not difficult to prove that both the a-core and the «-IR solution
satisfy consistency under the definition (ARG) (proof in Appendix). Further,
as far as the reduced games with respect to any singleton coalitions (i.e., Sis a
singleton in the above) are considered, the definition (ARG) is the same as
Definition 2-1. In the proof that the «-IR solution satisfiecs COCONS (Lemma
3-12, (iii)), I considered only one-person reduced games. Then it is immediate
that the «-IR solution satisfies COCONS also under the definition (ARG).
Lemma 3-13 also applies without any change (see Remark 3-2). Thus I con-
clude that the characterization of the a-IR solution (Theorem B) holds true
even under the definition of reduced games (ARG). However, at the present
time, I am not able to axiomatize the a-core using the definition (ARG). Itis a
subject of future research to see whether this is possible or not.

(II) As pointed out in Remarks 3-6 and 3-14, the two pairs of solutions,
{the a-core, strong Nash equilibria} and {the «-IR solution, Nash equilibria},
are respectively axiomatized by the same system of axioms under different
definitions of reduced games!®. The a-core of a game is the set of strategy
profiles that no coalition blocks. And the a-IR solution is the set of strategy
profiles that no single player blocks. Similarly, a strong Nash equilibrium is a
strategy profile from which no coalition can deviate with each member of the
coalition improving his payoff. And a Nash equilibrium is a strategy profile
from which no single player can profitably deviate. One may see a similarity
between the two pairs of solutions, {the a-core, the o-IR solution} and {strong
Nash equilibria, Nash equilibria}, in the way one solution relates to the other.
The points made in Remarks 3-6 and 3-14 give a formal content to this intu-
itive similarity. I find this rather important from the viewpoint that one of the
main purposes of axiomatizations is to compare solutions.

Appendix

The following claim is established under the definition of reduced games (ARG)
in Section 4(I) in the place of Definition 2-1.

15 Interestingly, a similar thing happens in coalitional form games: The Shapley value and the
prenucleolus are axiomatized by the same axioms under different types of reduced games (Hart
and Mas-Colell, 1989 and Sobolev, 1975). Maschler (1990) stated: “I find this a fascinating result:
It shows that the intrinsic difference between the Shapley value and the prenucleolus lies in the
way the subsets S of N interpret ‘their own game’!”
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Claim: Let 9 be a non-empty closed subfamily of ¢*. Then both the a-core
correspondence C and the «-IR solution correspondence IR on ¥ satisfy
CONS.

Proof: (a-core): Let G = (N,{Xj,u;};.y) €%. Assume that x e C(G). Let
S<N with S# J,N. Suppose that Xs ¢ C(GS ¥). Then 3T = S <N,
T # @: Iyr e X2 Vje Tt inf Im(u? u "y )>u “(xs). Denote by U the set
{jeT|y; # x;}. Clearly, U # . Then by the definition (ARG), Vje U:
inf_g\ 7 e xs\7 iInfop\sexa\s 4 (Vrs Zs\75 Zws) > wi(x) and Vje T\U: w(x) >

u;j(x). This implies U = T'. Thus I have Vj € T: inf Im(u,7) > u;(x). That is,
T blocks x in G. This says x ¢ C(G), a contradiction.

(«-IR solution): Similar (Set 7 = {} in the above proof). ©
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