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Abstract

This note considers the equilibrium outcomes of the preference revelation games
in the general model of indivisible good allocation introduced by Sönmez (1999). We
adopt the concepts of coalitional equilibria and cores which are both defined in terms of
the weak deviation or blocking by a prescribed class of admissible coalitions. We prove
that if the solution which induces preference revelation games is individually rational
and Pareto optimal and the class of admissible coalitions is “monotonic,” then the set
of coalitional equilibrium outcomes coincides with the core. And we point out that
the preceding analysis in the context of marriage problems (Gale and Shapley, 1962)
is hardly extended to the general model.
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1 Introduction

In this note we consider the equilibrium outcomes of the preference revelation games in
the general allocation model of indivisible goods introduced by Sönmez (1999). This
model includes, as special cases, some well-known problems such as marriage problems
and roommate problems (Gale and Shapley, 1962), housing markets (Shapley and Scarf,
1974), and hedonic coalition formation games (Banerjee, Konishi and Sönmez (2001) and
Bogomolnaia and Jackson (2002)).

In the context of marriage problems, the equilibria of preference revelation games have
been studied extensively. Among those studies, Sönmez (1997) provides one of the most
general results: The set of G-proof Nash equilibrium outcomes of the preference revelation
games induced by an individually rational and Pareto optimal solution coincides with
the G-weak core. Here G represents a class of coalitions, and these equilibrium and core
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concepts are defined in the fashion that the deviation or blocking power is restricted to
the coalitions belonging to G.

In this note we examine in the general setting the relationship between coalitional equi-
libria and cores similar to Sönmez’s result in marriage problems. We find that Sönmez’s
result is not generalized to the present model, but rather there are significant relationships
between the refined versions of his coalitional equilibrium and core concepts, namely the
strict G-proof Nash equilibrium and the G-strong core. These versions of the coalitional
equilibrium and the core are defined in terms of the weak notions of deviation or blocking
whereas Sönmez’s versions are defined by the strong notions. We prove that with these
concepts of the equilibrium and the core, for any G, the equilibrium outcomes are con-
tained in the core, and if G is monotonic, then the set of equilibrium outcomes and the
core coincides with each other.1 As a special case, our results imply that the set of strict
strong Nash equilibrium outcomes equals the strong core.2

2 Definitions

2.1 Model

We follow the definitions by Sönmez (1999). A generalized indivisible good allocation
problem (or a problem, simply) is a list (N, ω,Af , R). Here N is the nonempty finite
set of individuals. A coalition is a nonempty subset of N . For i ∈ N , ω(i) denotes the
initial endowment of individual i. Each ω(i) is a finite set. For S ⊂ N , ω(S) denotes
the set

⋃
{ω(i) | i ∈ S}.3 An allocation is a correspondence x : N →→ ω(N) satisfying

(i) for any i, j ∈ N with i 6= j, x(i) ∩ x(j) = ∅, and (ii) x(N) = ω(N). Here the condition
(i) means that no good can be owned by two or more individuals at the same time, and
the condition (ii) means no free disposal. Denote the set of all allocations by A0. Af is
the set of feasible allocations, which is a nonempty subset of A0 satisfying ω ∈ Af .
R = (Ri)i∈N is a preference profile. Each Ri is a weak ordering on Af .4 xRiy means
that to individual i, x is at least as good as y. As usual, Ii and P i respectively denote
the symmetric (“indifferent”) and the asymmetric (“strictly prefers”) parts of Ri. For
B ⊂ Af , top Ri(B) denotes the set {x ∈ B | ∀y ∈ B : xRiy}.

For each i ∈ N , Di denotes the nonempty set of admissible preferences of i. For a
coalition S, DS denotes the Cartesian product

∏
i∈S Di. Let D denote DN , the domain

of preferences. A solution is a single-valued function ϕ : D → Af .
One important example of preference domains is the domain P defined as follows: For

each i ∈ N , let P i denote the set of all preference relations in which (i) individual i has
strict preferences over own assignments (i.e. xIiy ⇒ x(i) = y(i)), and (ii) there is no
consumption externality (i.e. x(i) = y(i)⇒ xIiy). Let P denote

∏
i∈N P i. In most of the

studies on marriage problems (Gale and Shapley, 1962) or housing markets (Shapley and
Scarf, 1974), the domain P is assumed.

1Here that G is monotonic means that if a coalition S belongs to G, then any supercoalition of S also
belongs to G.

2The strict strong Nash equilibrium is a variant of the strong Nash equilibrium and is defined in terms
of the weak deviation.

3Throughout the paper, inclusion “⊂” is weak.
4A weak ordering is a complete and transitive binary relation.
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2.2 G-weak and -strong cores

Let a problem (N, ω,Af , R) and a nonempty class of coalitions G be given. Let x, y ∈ Af ,
and let S be a coalition. Then we say that x weakly dominates y via S under R if

x(S) = ω(S) &
(
∀i ∈ S : xRiy

)
&
(
∃j ∈ S : xP jy

)
. (1)

The G-strong core is the set of the allocations which are not weakly dominated by any
other allocation via any coalition belonging to G. The G-strong core correspondence
on D is the correspondence CG : D →→ Af such that for each R ∈ D, CG(R) is the
G-strong core of the problem (N, ω,Af , R). We say that x strongly dominates y via S
under R if

x(S) = ω(S) &
(
∀i ∈ S : xP iy

)
. (2)

The G-weak core is the set of the allocations which are not strongly dominated by any
other allocation via any coalition belonging to G. The G-weak core correspondence is
defined analogously and denoted by CWG . If G = 2N \{∅}, then the G-strong core (G-weak
core, respectively) is called the strong core (weak core, respectively). Denote the strong
core correspondence by C, and the weak core correspondence by CW .

Call G monotonic if for any two coalitions T and S, if S ∈ G and S ⊂ T , then T ∈ G.
An allocation x is Pareto optimal under R if there is no allocation which weakly

dominates x via N . And x is individually rational under R if for any i ∈ N , xRiω.
I(R) denotes the set of individually rational allocations under R. Note that any strong core
allocation is both individually rational and Pareto optimal whereas a weak core allocation
is individually rational but not necessarily Pareto optimal.

Call a solution ϕ Pareto optimal (individually rational, respectively) if for any
R ∈ D, the allocation ϕ(R) is Pareto optimal (individually rational, respectively) under
R.

2.3 Preference revelation games

Let a list (N, ω,Af ,D) and a solution ϕ : D → Af be given. Let R ∈ D. A preference
revelation game induced by ϕ is the strategic game (D, ϕ,R), where each Di is the
strategy space of individual i, and ϕ is the outcome function.

Let a game (D, ϕ,R) be given. Then a strategy profile R? ∈ D is a G-proof Nash
equilibrium if for any S ∈ G and any R′S ∈ DS ,(

∀i ∈ S : ϕ(R?−S , R′S)Riϕ(R?)
)
⇒
(
∃j ∈ S : ϕ(R?−S , R′S)Ijϕ(R?)

)
. (3)

And R? ∈ D is a strict G-proof Nash equilibrium if for any S ∈ G and any R′S ∈ DS ,(
∀i ∈ S : ϕ(R?−S , R′S)Riϕ(R?)

)
⇒
(
∀i ∈ S : ϕ(R?−S , R′S)Iiϕ(R?)

)
. (4)

If G = 2N \ {∅}, then a G-proof Nash equilibrium (strict G-proof Nash equilibrium, re-
spectively) is called a strong Nash equilibrium (strict strong Nash equilibrium,
respectively). If G = {{i} | i ∈ N}, then a (strict) G-proof Nash equilibrium is a Nash
equilibrium.

Denote by NG(D, ϕ,R) the set of G-proof Nash equilibria, by sNG(D, ϕ,R) the set of
strict G-proof Nash equilibria, by SN(D, ϕ,R) the set of strong Nash equilibria, and by
Nash(D, ϕ,R) the set of Nash equilibria .
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3 Results

3.1 Assumptions

In the following, let a list (N, ω,Af ,D) be given. In all of our results, we assume that
Conditions A and B in the below are satisfied.

Condition A For each i ∈ N , Di satisfies the following:

(i) There is no consumption externality, that is, for any Ri ∈ Di and any x, y ∈ Af ,
x(i) = y(i)⇒ xIiy.

(ii) For any x ∈ Af , there is some Ri ∈ Di for which
(a) top Ri(Af ) = {z | z(i) = x(i)}, and
(b) ω(i) 6= x(i)⇒ top Ri(Af \ top Ri(Af )) = {z | z(i) = ω(i)}.

Condition B The set Af satisfies the following: Let S be a coalition, and let x, y ∈ Af .
Then if x(S) = ω(S) = y(S) (which implies x(N \ S) = ω(N \ S) = y(N \ S)), then Af

contains the allocation v such that
(
∀i ∈ S : v(i) = x(i)

)
and

(
∀i ∈ N \ S : v(i) = y(i)

)
.

Note that the domain P defined in Sec. 2.1 satisfies Condition A. Condition B is satis-
fied in various problems such as marriage problems, roommate problems (Gale and Shapley,
1962), housing markets (Shapley and Scarf, 1974), and hedonic coalition formation games
(Banerjee, Konishi and Sönmez (2001) and Bogomolnaia and Jackson (2002)).

3.2 Statements of results

Theorem Let ϕ be a solution that is individually rational and Pareto optimal.
(A) For any R ∈ D, ϕ(sNG(D, ϕ,R)) ⊂ CG(R).
(B) If G is monotonic, then for any R ∈ D, ϕ(sNG(D, ϕ,R)) = CG(R).

Remarks (1) Clearly if G = 2N \{∅}, then G is monotonic. Thus it is immediate from our
theorem that the set of strict strong Nash equilibrium outcomes coincides with the strong
core. This generalizes the same observation made in the context of marriage problems in
the preference revelation games induced by stable solutions (Shin and Suh, 1996).5

(2) In (B) of our theorem, the monotonicity of G is essential. Without this assumption,
the equivalence does not hold even in the context of marriage problems, where the equiv-
alence result of the weak versions of the coalitional equilibrium and the core holds true.
(Sönmez, 1997) (see (i) of (I) in Sec. 3.3). A counter-example is provided in Example 1
in Appendix.

(3) In our theorem, the strict G-proof Nash equilibrium cannot be replaced with the
G-proof Nash equilibrium. A counter-example is provided in Example 2(i) in Appendix.

3.3 Extendability of previous results

We note which parts of the previous results in marriage problems (other than the one by
Shin and Suh (1996) in the above Remark (1)) can be extended to the present model. This
is concerned with the relationship between the G-proof Nash equilibrium and the G-weak
core rather than their strict or strong versions appearing in our Theorem.

(I) In the context of marriage problems,
5Note that in marriage problems, stable solutions are equivalent to both strong core solutions and weak

core solutions.
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(i) if ϕ is individually rational and Pareto optimal, then for any R ∈ P, ϕ(NG(P, ϕ,R)) =
CWG(R) (Sönmez, 1997). This result yields the two results in (ii) of (I) in the below
in the two extreme cases, G = {{i} | i ∈ N} and G = 2N \ {∅}.

(ii) If ϕ is a stable solution, then for any R ∈ P, ϕ(Nash(P, ϕ,R)) = I(R) (Alcalde,
1996) and ϕ(SN(P, ϕ,R)) = CW (R) (Shin and Suh, 1996).6

(II) In our general model,

(i) only one direction of inclusion in Sönmez’s result is generalized. That is, it holds
true that for any R ∈ D,

ϕ(NG(D, ϕ,R)) ⊂ CWG(R). (5)

This can be proved by the same line as the proof of (A) of our Theorem so we omit
the proof.

(ii) The reverse inclusion of (5) does not hold in either of the two extreme cases, G =
{{i} | i ∈ N} and G = 2N \ {∅}, even if ϕ is restricted to strong core solutions. (A
counter-example is Example 2(ii) in Appendix.) Thus neither of the two results in
(ii) of (I) above is generalized to our model.

3.4 Implications

The significance of our results is that they shed light on the consequence of the ma-
nipulation by misrepresenting preferences. In the present model, Sönmez (1999) and
Takamiya (2003) have characterized non-manipulable solutions: Given that the strong
core is nonempty for each preference profile, a solution is strategy-proof, individually ra-
tional and Pareto optimal if, and only if, the solution is a selection from the strong core
correspondence and the correspondence is essentially single-valued.7 We can draw two
implications from our results and the above characterization: (i) In most cases, the strong
core correspondence is neither nonempty-valued nor essentially single-valued so it is typi-
cal that solutions are open to manipulations. But the consequences of manipulations are
again related to strong cores if the solution is individually rational and Pareto optimal.
(ii) In the rare cases where the strong core correspondence is both nonempty-valued and
essentially single-valued (as in the case of housing markets), even if a solution is manip-
ulable, as a result of manipulations strong core allocations are likely to be realized if the
solution is individually rational and Pareto optimal.8

3.5 Proof of Theorem

Proof of (A). Suppose that for some R ∈ D, ϕ(sNG(D, ϕ,R)) 6⊂ CG(R). Then for some
R′ ∈ D, R′ ∈ sNG(D, ϕ,R) and ϕ(R′) 6∈ CG(R). Thus there is some x ∈ Af which weakly
dominates ϕ(R′) via some S ∈ G under R. Choose R?S ∈ DS satisfying for each i ∈ S,

top R?i(Af ) = {z | z(i) = x(i)}, and (6)
ω(i) 6= x(i)⇒ top R?i(Af \ top R?i(Af )) = {z | z(i) = ω(i)}. (7)

6Note that Shin and Suh (1996) provides two distinct results, the one in Remark (1) in Sec. 3.2 and
the other one stated here.

7The strong core correspondence is essentially single-valued if for each preference profile any two allo-
cations in the strong core are Pareto indifferent.

8Recently Bochet and Sakai (2007) have made a similar observation in the division problem with single-
peaked preferences (Sprumont, 1991). In this problem, it is known that the uniform rule is strategy-proof.
They show that even if the solution is not strategy-proof, any strong Nash equilibrium outcome coincides
with the uniform rule allocation if the solution satisfies some regular properties.
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Such R?S exists in DS by Condition A. Since ϕ is individually rational, for each i ∈ S,
ϕ(R′−S , R?S)(i) equals x(i) or ω(i).

Denote ϕ(R′−S , R?S) by y. Now we prove ∀i ∈ S : x(i) = y(i). Suppose that for some
i ∈ S, x(i) 6= y(i) (which implies y(i) = ω(i) 6= x(i)). Since x weakly dominates ϕ(R′) via
S under R, it holds true that x(S) = ω(S). And y(S) = ω(S) since ∀i ∈ S : y(i) = x(i) or
= ω(i). Then consider an allocation v which satisfies

∀i ∈ S : v(i) = x(i), and (8)
∀i ∈ N \ S : v(i) = y(i). (9)

Condition B ensures that Af contains this allocation v. Then v Pareto-dominates y. But
this contradicts the Pareto optimality of ϕ. Therefore, it holds true that ∀i ∈ S : x(i) =
y(i). Recall that x weakly dominates ϕ(R′) via S under R. Then it follows

(
∀i ∈ S :

yRiϕ(R′)
)

&
(
∃j ∈ S : yP jϕ(R′)

)
. This implies R′ 6∈ sNG(D, ϕ,R), a contradiction. 2

Proof of (B). It suffices to prove that ∀R ∈ D, CG(R) ⊂ ϕ(sNG(D, ϕ,R)) under the
monotonicity of G. Let R ∈ D and x ∈ CG(R). Choose R′ ∈ D such that for any i ∈ N ,

top R′i(Af ) = {z | z(i) = x(i)}, and (10)
ω(i) 6= x(i)⇒ top R′i(Af \ topR′i(Af )) = {z | z(i) = ω(i)}. (11)

Such R′ exists in D by Condition A. Then since ϕ is Pareto optimal, ϕ(R′) = x.
Now we prove R′ ∈ sNG(D, ϕ,R) (thus x ∈ ϕ(sNG(D, ϕ,R))). Suppose the contrary.

Then there is some coalition S ∈ G and R?S ∈ DS such that(
∀i ∈ S : ϕ(R′−S , R?S)Riϕ(R′)

)
&
(
∃j ∈ S : ϕ(R′−S , R?S)P jϕ(R′)

)
. (12)

Denote ϕ(R′−S , R?S) by y. Then if y(S) = ω(S), then (12) implies that y weakly dominates
x via S under R, which says x 6∈ CG(R), a contradiction. Thus it must be y(S) 6=
ω(S). Now let T denote an ⊂-minimal element of the class of coalitions {G ⊂ N | S ⊂
G & y(G) = ω(G)}. Thus for any i ∈ T \S, y(i) 6= ω(i). (Otherwise, T is not ⊂-minimal.)
Then since ϕ is individually rational, the construction of R′ implies ∀i ∈ T \S : x(i) = y(i),
which implies xIiy. This and (12) together say (∀i ∈ T : yRix) and (∃j ∈ S ⊂ T : yP jx),
and by construction y(T ) = ω(T ). This says that y weakly dominates x via T under R.
Since G is monotonic, T ∈ G. Thus it follows x 6∈ CG(R), a contradiction. This concludes
R′ ∈ sNG(D, ϕ,R). 2

Appendix

Here we provide the counter-examples in connection with Remarks (2), (3) in Sec. 3.2 and
(II) in Sec. 3.3.

Example 1 This example shows that even in the marriage problem, without the mono-
tonicity of G, (B) of Theorem does not hold true. (Remark (2) in Sec. 3.2.)

Consider the marriage problem (Gale and Shapley, 1962) with two men and two women:
N = M ∪W where M = {1, 2} and W = {3, 4}; ∀i ∈ N : ω(i) = {i}; and

Af =
{

x ∈ A0 |
(
∀i ∈ N : #x(i) = 1

)
&
(
∀m ∈M : x(m) ⊂W ∪ {m}

)
&(

∀w ∈W : x(w) ⊂M ∪ {w}
)

&
(
∀i, j ∈ N : x(i) = {j} ⇔ x(j) = {i}

)}
. (13)

The domain D equals P.9 Let ϕ be a stable solution. Let G be {{i} | i ∈ N} ∪ {{1, 2, 3}}.
Clearly, G is not monotonic.

9In this case, a preference relation on the feasible allocations (matchings) is identified with the corre-
sponding relation on the set of men (women, respectively) plus herself (himself, respectively).
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Consider R ∈ P defined in the sequel, for which CG(R) 6⊂ ϕ(sNG(P, ϕ,R)): Let R ∈ P
be such that

3P 11P 14, (14)
4P 22P 23, (15)
1P 33P 32, (16)
2P 44P 41. (17)

Consider the matching x ∈ Af such that

x(1) = 1, (18)
x(2) = 4, (19)
x(3) = 3. (20)

It is easy to show x ∈ CG(R). But x 6∈ ϕ(sNG(P, ϕ,R)), which is proved as follows: Let
R′ ∈ P be any profile such that x = ϕ(R′). We prove R′ 6∈ sNG(P, ϕ,R). Consider the
profile (R{1,2,3}, R′4). Under this profile, there is the unique stable matching y such that

y(1) = 3, (21)
y(2) = 4. (22)

(This is because: (i) It is clear that 1 and 3 have to be matched with each other under
(R{1,2,3}, R′4). (ii) If 4 were not matched with 2 under (R{1,2,3}, R′4), then 4 would have
to be matched with herself. But this implies that 4 would have been matched with
herself under R′. ) Then y = ϕ(R{1,2,3}, R′4). Note that yP 1x, yP 3x and yI2x. Thus
R′ 6∈ sNG(P, ϕ,R), the desired conclusion. We conclude CG(R) 6⊂ ϕ(sNG(P, ϕ,R)).

Example 2 This example shows that (i) the G-proof Nash equilibrium is not applicable to
Theorem (Remark (3) in Sec. 3.2) and (ii) the reverse inclusion of the formulae (5) does
not hold in either of the two extreme cases of G ((ii) of (II) in Sec. 3.3).

Consider the housing market (Shapley and Scarf, 1974) with three traders: N =
{1, 2, 3}; ∀i ∈ N : #ω(i) = 1; and Af = {z ∈ A0 | ∀i ∈ N : #z(i) = 1}. The do-
main D equals P.10 In this case, the strong core correspondence is singleton-valued (Roth
and Postlewaite, 1977). Denote ω(i) simply by i. Let ϕ be the strong core solution.11

(i) Consider R ∈ P defined in the sequel, for which ϕ(SN(P, ϕ,R)) 6⊂ C(R): Let R ∈ P
be such that

2P 11P 13, (23)
3P 21P 22, (24)
1P 33P 32. (25)

Note that ϕ(R) = (2, 3, 1). Let x = (2, 1, 3)(6= ϕ(R)). And choose another profile R′ ∈ P
such that

3P ′12P ′11, (26)
1P ′22P ′23, (27)
3P ′31P ′32. (28)

10In this case, a preference relation on Af is identified with the corresponding relation defined on ω(N).
11In this example, abusing notation, for an allocation x, x denotes the triple (x(1), x(2), x(3)).
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Then ϕ(R′) = x. And it is easy to show R′ ∈ SN(P, ϕ,R). Thus one has x ∈
ϕ(SN(P, ϕ,R)) and x 6∈ C(R), i.e. ϕ(SN(P, ϕ,R)) 6⊂ C(R). (Also, this implies ϕ(Nash(P, ϕ,R)) 6⊂
C(R).)

(ii) Consider R ∈ P defined in the sequel, for which CW (R) 6⊂ ϕ(Nash(P, ϕ,R)): Let
R ∈ P such that

2P 11P 13, (29)
1P 23P 22, (30)
1P 33P 32. (31)

First, note that x = (2, 3, 1) ∈ CW (R). Let R′ ∈ P be any profile such that x = ϕ(R′).
Then by the well-known “top trading cycle” algorithm for computing strong core al-
locations (Shapley and Scarf, 1974), it can be shown that any such R′ satisfies ∀i ∈
N : x(i) ranks top in R′i. Now choose any R?2 ∈ P2 which ranks the good 1 as the
best. Then ϕ(R′−2, R?2) = (2, 1, 3). Now clearly, ϕ(R′−2, R?2)(2)P 2ϕ(R′)(2). This says
that any such R′ cannot be a Nash equilibrium of the game (P, ϕ,R). Thus one has
x ∈ CW (R) and x 6∈ ϕ(Nash(P, ϕ,R)), i.e. CW (R) 6⊂ ϕ(Nash(P, ϕ,R)). This implies
I(R) 6⊂ ϕ(Nash(P, ϕ,R)) and CW (R) 6⊂ ϕ(SN(P, ϕ,R)).
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