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Abstract

This paper examines coalition formation problems from the viewpoint of

mechanism design. We consider the case where (i) the list of feasible coalitions

(those coalitions which are permitted to form) is given in advance; and (ii) each

individual’s preference is a ranking over those feasible coalitions which include

this individual. We are interested in requiring the mechanism to guarantee each

coalition the “right” of forming that coalition at least when every member of

the coalition ranks the coalition at the top. We name this property coalitional

unanimity. We examine the compatibility between coalitional unanimity and

incentive requirements, and prove that if the mechanism is strategy-proof and

respects coalitional unanimity, then for each preference profile, there exists at

most one strictly core stable partition, and the mechanism chooses such a parti-

tion whenever available. Further, the mechanism is coalition strategy-proof and

respects coalitional unanimity if, and only if, the strictly core stable partition

uniquely exists for every preference profile.
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Keywords— coalition formation problems, strict core stability, strategy-proofness,

coalitional unanimity.

1 Introduction

1.1 Motivation

This paper examines coalition formation problems from the viewpoint of mechanism

design. In our version of coalition formation problems, the list of the coalitions which

are permitted to form are given a priori. These coalitions are called feasible coali-

tions. And each individual is assumed to have a preference ranking over those feasible

coalitions which contain this individual. To our knowledge, our model of coalition for-

mation described above was introduced by Pápai (2004). Our model is general enough

to include several important models such as the marriage problem and the roommate
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problem (Gale and Shapley, 1962), and the model of hedonic coalition formation in-

troduced independently by Banerjee, Konishi and Sönmez (2001), Bogomolnaia and

Jackson (2002) and Cechlárová and Romero-Medina (2001).

Our theme is to identify conclusions from requiring mechanisms to guarantee group

rights. This embodies the idea that each group of people can make a decision on their

own at least when the decision is an internal concern of the group. This idea is an

natural extension of the idea of “property right” from the individual level to the group

level. This study considers a specific form of group right requirement in the following

sense: We search for those mechanisms which guarantee that each feasible coalition can

form that coalition at least when every member of the coalition ranks the coalition at the

top. We name this property of mechanisms coalitional unanimity. This property has

been studied in the context of the marriage problem by Takagi and Serizawa (2010).

We recognized the importance of this property from an ethical viewpoint and were

motivated to extend this property to a general coalition formation setting.1

From the viewpoint of mechanism design, those mechanisms not only satisfy the

group right requirement described above but also have to be incentive compatible.

Thus our concern is the compatibility between these two kinds of requirements, namely

group rights and incentive. In this paper, we concentrate on direct mechanisms. That

is, a mechanism is a single-valued function which specifies a feasible partition of the

grand coalition for each profile of preferences. Further, we adopt strategy-proofness

and coalition strategy-proofness as the relevant incentive requirements. In summing

up, our problem is to see what mechanisms are (coalition) strategy-proof and respects

coalitional unanimity at the same time.

1.2 Results

We postulate a class of preference domains which generalizes the strict preference do-

main. We prove that (i) if the mechanism is strategy-proof and respects coalitional

unanimity, then for each preference profile the mechanism chooses a strictly core stable

partition whenever available, and there exists at most one strictly core stable partition.

And we show that (ii) if the requirement of strategy-proofness in the above result is

strengthened to that of coalition strategy-proofness, then for every preference profile

there exists only one strictly core stable partition, and the mechanism chooses this par-

tition. Further, the converse of the second result holds true: (iii) if for each preference

profile, there exists only one strictly core stable partition, and the mechanism chooses

this partition, then the mechanism is coalition strategy-proof and respects coalitional

unanimity.

Although our results are not impossibility results, they yield impossibility in many

special cases because the requirement that there exists only one (or at most one) strictly

1After the first version of this paper was submitted to this journal, we were pointed out that an

axiom essentially similar to our coalitional unanimity had been independently introduced in Rodŕıguez-

Álvarez (2009). There the similar axiom was called top coalition and formulated as an auxiliary axiom

to be used in the proofs of his results, not as one of his main axioms. We will mention the paper

of Rodŕıguez-Álvarez in Sec.4. His axiom is named after the concept of “top coalitions” of Banerjee,

Konishi and Sönmez (2001). We will mention the relationship between coalitional unanimity and their

top coalition concept after the axiom is formally defined. (See Sec.2.2.)
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core stable partition for every preference profile is very strong. An example where the

impossibility obtains is the marriage problem (Takagi and Serizawa, 2010). So our

results reveal a severe limitation on the possibility of strategy-proof mechanisms which

respect coalitional unanimity.

In a broader perspective, our results exhibit the conflict between strategy-proofness

and the guarantee of group rights. The conclusions of our results are very similar

to that of the well-known result by Sönmez (1999): In a general model of discrete

allocations which contains the present class of problems as a special case, strategy-

proofness, Pareto efficiency and individual rationality together imply that any two

strict core allocations are Pareto indifferent (which means the strict core is regarded as

unique in terms of welfare) for those preference profiles for which the strict core is not

empty, and that the mechanism chooses a strict core allocation for those profiles. Thus

in the context of coalition formation, the conflict between strategy-proofness and group

rights shows a similar quality as the well-known conflict between strategy-proofness and

Pareto efficiency (plus individual rationality), which has been central to the study of

strategy-proof mechanisms.

1.3 Related works

We note three papers highly related to the present work. Pápai (2004) introduces

the coalition formation model which we study in this paper, and also studies unique

strict cores for the case of strict preferences. She provides a necessary and sufficient

condition, called the single-lapping condition, that the set of feasible coalitions is to

satisfy for the coalition formation problem to have a unique core stable partition for all

the preference profiles.2 Further, she shows that under this condition, the mechanism

which chooses the strict core stable partition for every preference profile is the unique

mechanism which is strategy-proof, individually rational and Pareto efficient.

Takagi and Serizawa (2010) study strategy-proof mechanisms for marriage problems

(Gale and Shapley, 1962). They introduce a property called “pairwise unanimity,”

which is the version of coalitional unanimity in the context of the marriage problem.

They prove that there does not exist any mechanism which is strategy-proof and re-

spects pairwise unanimity. This result can be derived from the first one of our three

results. Their work has directly motivated the present work.

Toda (2006) studies set-valued rules for marriage problems, and independently in-

troduces a set-valued version of the pairwise unanimity of Takagi and Serizawa (2010).3

He proves that any rule which is Maskin monotonic and respects coalitional unanimity

is a subcorrespondence of the stable correspondence. He also obtains characterizations

of the stable correspondence using Maskin monotonicity and additional properties.

2Pápai (2004) actually deals with the core stability rather than strict core stability. But these two

concepts are equivalent when preferences are strict, as is assumed in her paper.
3Toda (2006) calls this property mutually best.
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2 Preliminaries

2.1 Model of coalition formation

Let N = {1, 2, · · · , n} with n ≥ 2 be the set of individuals. A coalition is a

nonempty subset of N . A coalition formation problem is a list (N,F ,�). Here F

is the set of feasible coalitions. F is a nonempty subset of the set of all coalitions,

{S | ∅ 6= S ⊂ N}. For each i ∈ N , F (i) denotes the set of feasible coalitions that

contain i, that is, {S | i ∈ S ∈ F}. We assume for any i ∈ N , {i} ∈ F .

A partition of N is called a feasible partition if the partition consists only of

feasible coalitions. Let x be a feasible partition, and let i ∈ N . Then x(i) denotes the

coalition in x which contains i. Let us denote by X(F ) the set of feasible partitions.

In the following, as long as there is no ambiguity, we refer to them simply “partitions.”

And we also call them “outcomes” depending on the context.

�= (�i)i∈N is a preference profile. For each i ∈ N , �i is a weak ordering (com-

plete and transitive binary relation) over F (i). As usual, �i denotes the asymmetric

part, and ∼i denotes the symmetric part of �i.

Note that we are assuming that preferences are hedonic, that is, for any individual,

preferences depend only on the composition of the coalition of which that individual

is a member.4 Let x, y ∈ X(F ). Then abusing notation, let us denote

x �i y (1)

if and only if

x(i) �i y(i). (2)

Likewise, we often regard preference relations �i defined on F (i) as if they are defined

on X(F ).

As far as we know, the present model was first studied by Pápai (2004). This

model generalizes the model of hedonic coalition formation independently introduced by

Banerjee, Konishi and Sönmez (2001), Bogomolnaia and Jackson (2002), and Cechlárová

and Romero-Medina (2001), where all coalitions are assumed to be feasible. Also our

model includes as a special case the well-known marriage problems (two-sided one-

to-one matching problems) and roommate problems (one-sided one-to-one matching

problems) as in Gale and Shapley (1962). On the other hand, although our model

also includes college admission problems (two-sided many-to-one matchings), our re-

sults are not applicable to those problems. This is because in those matching problems,

preferences are assumed to have some special structures (such as “responsiveness” or

“separability” (see Roth and Sotomayor (1990) for their definitions)), which are not

compatible with our domain assumptions to be stated later.

2.2 Properties of mechanisms

For each i ∈ N , Di is the (nonempty) set of the preferences relations admissible to i.

Denote D := D1 ×D2 × · · · ×Dn.

4The term “hedonic” in this context was coined by Dréze and Greenberg (1980).
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Let a list (N,F , D) be given. A mechanism f is a single-valued function f :

D → X(F ).5 Let i ∈ N , and let �i∈ Di, �−i∈ D−i and �̃i ∈ Di. We say that i

manipulates f at (�−i,�i) by �̃i if

f(�−i, �̃i) �i f(�−i,�i). (3)

We say that f is strategy-proof if there exists no i who manipulates f at any (�−i,�i)

by any �̃i.

Let S be a coalition, and let �S∈ DS, �−S∈ D−S and �̃S ∈ DS. We say that S

manipulates f at (�−S,�S) by �̃S if

∀i ∈ S, f(�−S, �̃S) �i f(�−S,�S), and (4)

∃i ∈ S, f(�−S, �̃S) �i f(�−S,�S). (5)

We say that f is coalition strategy-proof if there exists no S who manipulates f at

any (�−S,�S) by any �̃S.

We say that f is individually rational if for any i ∈ N , and any �∈ D,

f(�)(i) �i {i}. (6)

We introduce our main axiom. A mechanism is said to respect coalitional una-

nimity if it satisfies the property described as follows: For any feasible coalition, if the

coalition is top-ranked for every member of this coalition, then the mechanism recom-

mends the formation of this coalition. The formal description is as follows: We say

that f respects coalitional unanimity if the following is satisfied: For any �∈ D,

and any S ∈ F , if

∀i ∈ S, (∀T ∈ F (i), S �i T ), (7)

then

S ∈ f(�) (8)

Note that coalitional unanimity may not be well-defined when preferences include

indifferences. Because with indifferences it may be the case that two coalitions which

are both top-ranked by their members have a nonempty intersection. In this case, it

is obviously impossible that these two coalitions present themselves in one partition so

this axiom is contradictory. We will impose an assumption (Assumption 2 in Sec.3.1)

on the preference domain to exclude such cases and make the axiom well-defined.

Coalitional unanimity is a generalization of the axiom “pairwise unanimity” intro-

duced by Takagi and Serizawa (2010) in the context of marriage problems (two-sided

one-to-one matching problems), a special case of the present model. Pairwise unanimity

is identical with coalitional unanimity in this class of problems.6

5In this paper, we consider direct mechanisms only.
6Takagi and Serizawa (2010) defines an analogous axiom in the context of college admission prob-

lems (many-to-one matching problems) under the same name “pairwise unanimity.” This axiom

requires that the mechanism respects the unanimity by a college-student pair. We note that this

axiom is not a special case of our coalitional unanimity. Because a college-student pair does not

necessarily form a coalition by themselves since one college can be matched with many students.
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It is worth mentioning that the concept of “top coalitions” of Banerjee, Konishi

and Sönmez (2001) is related to coalitional unanimity. Let ∅ 6= S ⊂ V ⊂ N . Then

S is said to be a top coalition of V if for any i ∈ S and any T ⊂ V with T ∈ F (i),

S �i T .7 Given this definition, f satisfies coalitional unanimity if and only if for any

S ∈ F and any �∈ D, if S is a top coalition of N , then S ∈ f(�).

2.3 Strict core stability

Let a problem (N,F ,�) be given. And let x ∈ X(F ), and S ∈ F . Then we say that

S blocks x if (
∀i ∈ S, S �i x(i)

)
&
(
∃j ∈ S : S �j x(j)

)
. (9)

A partition x is said to be strictly core stable if no feasible coalition blocks x.

The concept of strict core stability is a refinement of core stability which is defined

by a weaker notion of blocking obtained by replacing the formula (9) in the above with

the following:

∀i ∈ S, S �i x(i). (10)

Note that these two core concepts are equivalent if preferences are all strict, i.e. S ∼i T

implies S = T .

The strict core stable correspondence is the set-valued function which specifies

the set of strict core stable partitions for each preference profile. Let us denote the

strict core stable correspondence by C .

3 Results

3.1 Domain assumptions

We define a class of domains by two assumptions. In the following, we fix the elements

(N,F , D). Correspondingly, let us abbreviate X(F ) to X.

In the definitions in the sequel, we consider for each i ∈ N , a partition Pi of the

set X. For any x ∈ X, let Pi(x) denote the cell of the partition Pi which contains x.

Assumption 1 D is defined such that for any i ∈ N , there exists a partition Pi of

X such that

Di =
{
�i | ∀x, y ∈ X,

(
x ∈Pi(y)⇔ x(i) ∼i y(i)

)}
, (11)

and

∀x, y ∈ X, ∃i ∈ N : x 6∈Pi(y). (12)

7Here we are giving one of possible definitions of top coalitions extended to the present setting.

The original definition by Banerjee et al. is provided for the coalition formation model where any

coalitions are feasible. Our definition reduces to theirs if we assume F = 2N \ {∅}.
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Note that by Assumption 1, for each individual i, the partition Pi constitutes the

indifference class. That is, in any of his admissible preferences, any two outcomes are

indifferent for individual i if, and only if, these two outcomes belong to the same cell

of the partition Pi.

Assumption 1 means that indifferences are incorporated in the domain D in the

following way: For each individual i, the indifference class Pi is given a priori, and

this individual ranks the outcomes as if he strictly ranks these indifference sets, i.e. the

cells of Pi. And the set of admissible preferences Di for individual i exactly consists of

all such rankings. Additionally, the profile of indifference classes (Pi)i∈N is required

to be such that for any two distinct outcomes, there is at least one individual who is

not indifferent between the two outcomes.

Obviously, the indifference class Pi of X uniquely corresponds to the indifference

class P̃i of F (i) in the way that x ∈Pi(y) if and only if x(i) ∈ P̃i(y(i)). Thus in the

following, as long as no ambiguity arises, let us equate these two indifference classes

and denote them by the same “Pi.”

The same domain condition as Assumption 1 is found in Takamiya (2007), which

calls a domain satisfying this assumption an “essentially strict preference domain.”

Preferences which satisfy Assumption 1 naturally arise when some individual cares

only about a part of the composition of the coalition which this individual belongs to.

Let a profile of indifference classes (Pi)i∈N of X be given, and let D satisfy As-

sumption 1 with this (Pi)i∈N . Then we impose on (Pi)i∈N the following assumption.

This assumption is in order to make coalitional unanimity well-defined.

Assumption 2 For any i ∈ N and any S, T ∈ F with S 6= T ,(
S ∈Pi(T )

)
⇒
(
∃j ∈ S ∩ T : S 6∈Pj(T )

)
. (13)

Note that Assumption 2 implies the following fact which will be used in the proofs

of our theorems.

∀i ∈ N,
{
{i}
}
∈Pi. (14)

This means that no singleton is indifferent to any other coalition.

Example 1 We present examples for which Assumptions 1 and 2 are both satisfied.

(1) The strict preference domain is the domain such that each Di consists exactly

of those preferences which satisfy

∀i ∈ N, ∀S, T ∈ F (i), S ∼i T ⇒ S = T. (15)

If the domain is the strict preference domain, then Assumption 1 and 2 are satisfied:

In this case, for each individual i, the indifference class Pi is set to be the finest

partition {{S} | S ∈ F (i)}. Then the two assumptions are satisfied trivially. The strict

preference domain is common in the literature of matching and coalition formation.

(2) Since the strict preference domain rules out indifferences in preferences, it is

worthwhile to have a natural example which incorporates indifferences. We give the

following one.
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• The set of individuals N is such that N = N1 ∪N2 ∪ · · · ∪Nm, where (i) m ≥ 1,

(ii) for any t = 1, 2, · · ·m, Nt 6= ∅, and (iii) for any t, s = 1, 2, · · ·m with t 6= s,

Nt ∩Ns = ∅. That is, N is partitioned into m subgroups.

• The set of feasible coalitions F is such that

F =
{
S ⊂ N | ∀t, |Nt ∩ S| = 1

}
∪
{
{i} | i ∈ N

}
. (16)

That is, each feasible coalition is (i) a coalition consisting of m components, and

each t-th component is an individual from the set Nt, or (ii) a singleton.

• For each t and each i ∈ Nt, the indifference class Pi is set as follows:

∀S, T ∈ F (i),
(
S ∈Pi(T )⇔ S ∩Nt+1 = T ∩Nt+1

)
, (17)

where Nm+1 = N1. That is, an individual in the t-th group Nt has “strict

preferences” over the (t + 1)-th group Nt+1.

It is easy to check that Assumptions 1 and 2 are satisfied. This example is inter-

preted as m-sided one-to-one matching problems with “circular” preferences (in the

sense that individuals in Nt have preferences over Nt+1). In the case m = 2 these

problems are two-sided matching problems, i.e. well-known marriage problems (Gale

and Shapley, 1962). And the case m = 3 has been raised by Knuth (1976) and studied

in Ng and Hirschberg (1991) and subsequent literature.

3.2 Statements of results

In all of our results and proofs in the sequel, it is postulated that the domain D satisfies

Assumptions 1 and 2.

Theorem 1 If the mechanism f is strategy-proof and respects coalitional unanimity,

then for any �∈ D, either C (�) = {f(�)} or C (�) = ∅.

Remark 1 From Theorem 1, an impossibility result follows: If for some preference

profile there are two or more strictly core stable partitions, then there is no mechanism

which is strategy-proof and respects coalitional unanimity. The case of the marriage

problem (Gale and Shapley, 1962), which is dealt with by Takagi and Serizawa (2010), is

one of such cases. Two other examples are the roommate problem (Gale and Shapley,

1962) and the hedonic coalition formation problem (Banerjee, Konishi and Sönmez

2001, Bogomolnaia and Jackson 2002, and Cechlárová and Romero-Medina 2001).

Next, we strengthen the requirement of strategy-proofness in the above theorem to

that of coalition strategy-proofness. Then the nonemptiness of the strict core follows.

Theorem 2 If the mechanism f is coalition strategy-proof and respects coalitional una-

nimity, then for any �∈ D, C (�) = {f(�)}.

The converse of Theorem 2 also holds true.
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Theorem 3 If for any �∈ D, C (�) = {f(�)}, then the mechanism f is coalition

strategy-proof and respects coalitional unanimity.

Remark 2 Pápai (2004) gives a necessary and sufficient condition which the set of

feasible coalitions is to satisfy for the strictly core stable partition to be unique for all

strict preference profiles. This condition is called the “single-lapping property.” Pápai

also proves that if the set of feasible coalitions satisfies the single-lapping property,

then the mechanism which chooses strictly core stable partitions is the only mechanism

which is strategy-proof, individually rational and Pareto efficient. The significance of

our Theorems 2 and 3 is that they provide another characterization of the single-valued

strict core.

3.3 Proofs

First of all, we confirm that coalitional unanimity is well-defined.

Lemma 1 For any �∈ D, and any S1, S2 ∈ F , if for each k = 1, 2, and any i ∈ Sk,(
∀T ∈ F (i), Sk �i T

)
, then S1 ∩ S2 = ∅.

Proof. Suppose the contrary, that is, there are some S1, S2 ∈ F for which every

member of each coalition ranks that coalition at the top, and S1 ∩ S2 6= ∅. Then for

each i ∈ S1 ∩ S2, S1 ∼i S
2. This clearly contradicts Assumption 2. 2

To proceed further, we need to introduce some notations.

• Let � be a preference profile. Let x ∈ X and i ∈ N . Then let us define the

preference relation “ �x
i ” as follows: If x(i) = {i}, then �x

i =�i; otherwise, �x
i

is such that it satisfies the following three conditions:

(i) x(i) �x
i {i},

(ii) 6 ∃S ∈ F (i) \ {{i}}, x(i) �x
i S �x

i {i},

(iii) ∀S, T ∈ F (i) \ {{i}}, (S �i T )⇔ (S �x
i T ).

That is, �x
i is the preference ranking which is obtained from �i by moving {i}

to the position immediately below x(i) and leaving other positions the same.

• Further, let us define the preference relation “ �↑(x)i ” so as to satisfy the following

two conditions:

(i) ∀S ∈ F (i) \Pi(x(i)), x(i)�↑(x)i S,

(ii) ∀S, T ∈ F (i) \Pi(x(i)), (S �i T )⇔ (S �↑(x)i T ).

That is, �↑(x)i is the preference ranking which is obtained from �i by moving

up the indifference set including x(i) to the top and leaving other positions the

same.

• Finally, let “ �x↑
i ” be a shorthand for (�x

i )↑(x). That is, �x↑
i is obtained by

performing the first and the second operations defined above sequentially on �i.

9



3.3.1 Proof of Theorem 1

Our proof starts with picking up x ∈ C (�) for an arbitrary �∈ D such that C (�) is

not empty, and ends with establishing x = f(�). This is done by induction in the two

steps described as follows:

Step 1. Prove (i) and (ii).

(i) f(�x↑) = x.

(ii) for any i ∈ N , f(�x↑
−i,�i) = x.

Step 2. Prove that (iii) implies (iv) for any given m such that 0 < m < n.

(iii) for any T ⊂ N with |T | = m, f(�x↑
−T ,�T ) = x.

(iv) for any T ⊂ N with |T | = m + 1, f(�x↑
−T ,�T ) = x.

In the following, we complete Step 1 via a sequence of lemmas. In the sequel, until

the end of the proof of this theorem, we assume that f is strategy-proof and respects

coalitional unanimity.

Lemma 2 f is individually rational.

Proof. Suppose f is strategy-proof and respects coalitional unanimity, but is not

individually rational. Then there are some �∈ D and i ∈ N for which

{i} �i f(�)(i) (18)

Let �?
i be a preference relation of i such that

∀S ∈ F (i) \ {{i}}, {i} �?
i S. (19)

Then the coalitional unanimity of f implies

f(�−i,�?
i )(i) = {i}. (20)

This implies

f(�−i,�?
i ) �i f(�), (21)

which means the violation of strategy-proofness. 2

Lemma 3 For any x ∈ X and any �∈ D, f(�x↑) = x.

Proof. Immediate from the coalitional unanimity of f . 2

Lemma 4 For any �∈ D, if x ∈ C (�), then for any i ∈ N , f(�x↑
−i,�i) ∼i x.
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Proof. Let us denote f(�x↑
−i,�i)(i) by S. Suppose the conclusion of the lemma does

not hold, i.e., x(i) 6∼i S. Then either x(i) �i S or S �i x(i) is true.

Case 1. Suppose x(i) �i S. That is,

f(�x↑
−i,�

x↑
i ) �i f(�x↑

−i,�i), (22)

which violates strategy-proofness, a contradiction.

Case 2. Suppose S �i x(i). Note that x(i) �i {i} since x ∈ C (�). Then S �i x(i)

implies S �i {i}. Thus S 6= {i}.
Pick up j ∈ S with j 6= i. Then by Lemma 2 and the fact (14), we have S �x↑

j {j}.
Then this and the way �x↑ is defined together imply

S �j x(j). (23)

(Because if x(j) �j S on the contrary, then the definition of �x
j implies {j} �x

j S. And

since �x↑
j means (�x

j )↑(x), this implies also {j} �x↑
j S. This is a contradiction.) Note

that this holds true for all j ∈ S \ {i}. Thus S blocks x under �, which contradicts

our supposition x ∈ C (�). 2

Lemma 5 For any �∈ D and any T ⊂ N with T 6= ∅, if x ∈ C (�) and for any i ∈ T ,

f(�x↑
−T ,�T ) ∼i x, then f(�x↑

−T ,�T ) = x.

Proof. Let x ∈ C (�) and y = f(�x↑
−T ,�T ). And assume

∀i ∈ T, y(i) ∼i x(i). (24)

Suppose that for some i? ∈ N \ T,

y(i?) 6∼x↑
i? x(i?). (25)

Note that x(i?)∩ T 6= ∅ because otherwise by the coalitional unanimity of f we would

have y(i?) = x(i?). Then since f is individually rational (Lemma 2),

∀i ∈ x(i?) \ T, y(i) �x↑
i {i}. (26)

This and the way �x↑ is constructed together imply

∀i ∈ x(i?) \ T, y(i) �i x(i). (27)

Then (25) and (27) imply

y(i?) �i? x(i?). (28)

(24), (27) and (28) together imply that y(i?) blocks x under �. But this contradicts

our supposition x ∈ C (�). Therefore we have ∀i ∈ N \ T, y(i) ∼x↑
i x(i). This and

(24) imply ∀i ∈ N, y(i) ∼i x(i). Further, this and Assumption 1 imply that y = x, the

desired conclusion. 2
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By Lemmas 4 and 5, we conclude that for any �∈ D, any i ∈ N and any x ∈ C (�),

f(�x↑
−i,�i) = x. (29)

This completes Step 1.

Now we proceed to Step 2, which as we have stated is to be done by induction. Let

x ∈ C (�). Our induction hypothesis is in the below.

Induction Hypothesis (IH) Let m be a natural number such that 0 < m < n. Then

for any T ⊂ N with |T | = m,

f(�x↑
−T ,�T ) = x. (30)

Now under (IH), we prove that for any T ⊂ N with |T | = m + 1, (30) is true.

Let T ⊂ N with |T | = m + 1. Let j ∈ T . Then by (IH),

f(�x↑
−T ,�T\{j},�x↑

j ) = x. (31)

Let us denote

f(�x↑
−T ,�T\{j},�j) = y. (32)

In the following, we prove that x(j) ∼j y(j).

Case 1. First, note that x(j) 6�j y(j). Because otherwise j manipulates the outcome

by reporting �x↑
j under the true preference �j, which violates the strategy-proofness

of f .

Case 2. Next, suppose

y(j) �j x(j). (33)

Then since x ∈ C (�), x(j) �j {j}. This implies y(j) �j {j}. Thus y(j) contains some

member other than j.

Now we prove that the above supposition y(j) �j x(j) implies that there is some

k ∈ (y(j) \ {j}) ∩ T for which x(k) �k y(j). Suppose the contrary. That is,

∀k ∈ (y(j) \ {j}) ∩ T, y(j) �k x(k). (34)

Then the individual rationality of f (Lemma 2) implies for any l ∈ (y(j)\{j})∩(N \T ),

we have

y(j) �x↑
l {l}. (35)

This and the construction of �x↑ together imply

∀l ∈ (y(j) \ {j}) ∩ (N \ T ), y(j) �l x(l). (36)

Then (33), (34) and (36) imply that y(j) blocks x under �. But this contradicts

x ∈ C (�). Thus we conclude that for some k ∈ (y(j) \ {j}) ∩ T ,

x(k) �k y(j). (37)
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However, (IH) implies

f(�x↑
−T ,�T\{j,k},�j,�x↑

k ) = x. (38)

Recall that we have defined

f(�x↑
−T ,�T\{j,k},�j,�k) = y. (39)

Thus (37), (38) and (39) together imply that k manipulates the outcome by reporting

�x↑
k under the true preference �k, which violates the strategy-proof of f . Thus we

conclude y(j) 6�j x(j). This completes Case 2.

By the above arguments (Case 1 and Case 2) we have x(j) ∼j y(j). And since j

has been taken arbitrarily from T , we have

∀j ∈ T, f(�x↑
−T ,�T ) ∼j x. (40)

Then by (40) and Lemma 5 together imply

f(�x↑
−T ,�T ) = x. (41)

This completes Step 2. 2

3.3.2 Proof of Theorem 2

By Theorem 1, for any �∈ D, if C (�) 6= ∅, then C (�) = {f(�)}. Thus to prove

Theorem 2, it suffices to prove that for any �∈ D, C (�) 6= ∅ if f is coalition strategy-

proof and respects coalitional unanimity.

Suppose that for some �∈ D, C (�) = ∅. Let us denote f(�) = x. Then there is

some S ∈ F which blocks x. That is,(
∀i ∈ S, S �i x(i)

)
&
(
∃j ∈ S, S �j x(j)

)
(42)

For each i ∈ S, let �?
i be a preference relation of i such that

∀T ∈ F (i), S �?
i T. (43)

Then the coalitional unanimity of f implies for any i ∈ S

f(�−S,�?
S)(i) = S. (44)

Then (42) and (44) together imply(
∀i ∈ S, f(�−S,�?

S) �i f(�)
)

&
(
∃j ∈ S, f(�−S,�?

S) �j f(�)
)

(45)

which means the violation of coalition strategy-proofness. 2
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3.3.3 Proof of Theorem 3

Let f be such that for any �∈ D, {f(�)} = C (�). It is immediate that such f

respects coalitional unanimity. We prove such f is coalition strategy-proof. Suppose

the contrary. Then for some S ⊂ N with S 6= ∅, some �∈ D and some �?
S∈ DS,(

∀i ∈ S, f(�−S,�?
S) �i f(�)

)
&
(
∃j ∈ S, f(�−S,�?

S) �j f(�)
)

(46)

Denote x = f(�) and y = f(�−S,�?
S).

By assumption (i.e. {f} = C ), we have {x} = C (�). Let us consider �↑(y)S . Then

clearly the change of preferences from �S to �↑(y)S does not alter the strict core stable

partition because the relative position of x to y does not alter in this preference change.

Thus we have

{x} = C (�−S,�↑(y)S ). (47)

Similarly by assumption, we have {y} = C (�−S,�?
S). Then again evidently the change

of preferences �?
S to �↑(y)S does not alter the strict core, that is,

{y} = C (�−S,�↑(y)S ). (48)

(47) and (48) imply x = y, which contradicts our supposition (46). 2

4 Concluding Remarks

Here we conclude our paper mentioning two directions of extension or variation. The

first direction is as follows. Our results have been proved under some domain as-

sumptions which are not compatible with special preference structures commonly as-

sumed in two-sided many-to-one matching problems (college admission problems) such

as “responsiveness” and “separability.” (See Roth and Sotomayor (1990) for their

definitions.) So one of our interests in the future research is to see whether simi-

lar results hold for some domains which permit such preference structures. Takagi

and Serizawa (2010) have already shown that in the context of many-to-one matching

problems an impossibility theorem similar to that in the marriage problem holds true.

Rodŕıguez-Álvarez (2009) considers a coalition formation model on the separable pref-

erence domain and other domains, and characterizes a certain coalition formation rule

by strategy-proofness and additional properties other than coalitional unanimity. His

coalition formation model is different from ours in the point that it does not explic-

itly incorporate feasibility constraints on coalitions. However, the characterized rule is

defined using the single-lapping property (Pápai, 2004) and closely related to the core

stability in the presence of feasibility constraints.

The second direction is to consider the weakening of incentive requirements. In

this direction, we announce that Takamiya (2008) deals with the case of Nash imple-

mentation. There a version of coalitional unanimity for social choice correspondences

(i.e. multi-valued rule) is defined, and the following result is shown: Under some reg-

ular assumptions, a social choice correspondence is Nash implementable and respects
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coalitional unanimity if and only if the correspondence is the strictly core stable corre-

spondence.
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[8] Pápai S (2004) Unique stability in simple coalition formation games. Games and

Economic Behavior 48: 337–54.
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